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Abstract
Darboux transformation of both Barut–Girardelo and Perelomov coherent states
for the time-dependent singular oscillator is studied. In either case, a measure
that realizes the resolution of the identity operator in terms of coherent states is
found and a corresponding holomorphic representation is constructed. For the
particular case of the free particle moving with the fixed value of the square of
angular momentum equal to 2 it is shown that the Barut–Giriardelo coherent
states are more localized at the initial time moment while the Perelomov
coherent states are more stable with respect to time evolution. It is also
illustrated that Darboux transformation may keep unchanged this different
time behaviour.

PACS numbers: 03.65.Fd, 11.30.Pb

1. Introduction

There exist several definitions of coherent states (CS) [1–3]. Different definitions lead to the
same result for the harmonic oscillator potential and usually different results for other physical
systems. Nevertheless, a careful analysis shows that different CS possess common properties
which can be considered to define CS for the very general quantum system [3]. It happens
that such a definition is very ambiguous. Therefore, one can choose from different possible
systems the one which has a desirable property. For instance, one can look for a state the
wavefunction of which can be expressed in terms of known special functions or even in terms
of elementary functions only. This simplifies considerably the study of the CS and their use in
other applications. In this way, one could construct different systems of CS for the well-known
soliton potentials both for time-dependent and time-independent cases [4].
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The most essential progress in studying CS has been achieved for systems possessing
symmetries [2]. If it is not possible to associate a symmetry group with a quantum system
the problem becomes much more complicated. For instance, after applying a nontrivial
supersymmetry (or equivalently Darboux) transformation to a Hamiltonian allowing for a
symmetry, the symmetry is usually lost or it is transformed to a nonlinear symmetry [5].
This makes it impossible to apply group theoretical methods for studying CS. In this respect,
it was suggested applying the same transformation to the known CS of the initial quantum
system and treating states thus obtained as coherent states for the transformed system [6, 7].
Such a possibility is based on the fact that these states fulfil all properties of coherent states
formulated by Gazeau and Klauder [3]. This approach has proved to be useful for studying
CS for supersymmetrically transformed harmonic oscillator [7] and time-independent singular
oscillator [8] potentials. In particular, using correspondence between classical and quantum
systems, which can be realized just by the technique of CS (see, e.g., [2]), one could give
an interpretation of the supersymmetry transformation in terms of classical notions [5] as
a transformation of the Kähler potential. Here, we continue this study at the level of the
time-dependent singular oscillator.

The time-dependent singular oscillator Hamiltonian

h0 = −∂2
x + ω2(t)x2 + gx−2 (1)

plays an essential role in different physical applications, among which we would like to
mention interesting results in molecular physics [9], optics [10] and mathematical physics
[11]. The concept of even and odd coherent states [12] based on generalized coherent states of
the Hamiltonian (1) serves as the simplest model of a quantum microscopical superposition,
the problem raised by Schrödinger [13] and known as Schrödinger cat states. They appear
as photon nonclassical states in cavity experiments [14], in studying optical properties of a
nonlinear Kerr medium [15] and in experiments with trapped ions [16]. To obtain a qualitative
description of the phenomenon and more or less good numerical agreement between theoretical
results and experimental data it was necessary to introduce in the theory various nonlinear
modifications [17]. Recently, a model of a two-ion trap has been proposed based on this
Hamiltonian (see [18] where a good literature review is also given).

From this point of view, the CS we are studying in this paper give an example of highly
nonlinear coherent states which take into consideration a certain perturbation of the simple
interaction presented in the Hamiltonian (1). This perturbation is not arbitrary. It is consistent
with the fact that the perturbed Hamiltonian h1 is related to h0 by a time-dependent Darboux
transformation. For the Hamiltonian h0 two systems of CS are commonly known, these are
Barut–Girardelo CS and Perelomov CS (for the definitions, see section 2). We apply the
same Darboux transformation operator to both systems of CS thus obtaining two different
systems of solutions of the Schrödinger equation with the Hamiltonian h1. They satisfy all
the properties formulated by Gazeau and Klauder [3] for the states to be CS except maybe
for the resolution of the identity operator. Next, for both systems of the above states we find
a measure that realizes the resolution of the identity operator in terms of these states thus
proving the main result of the paper that in both cases we obtain coherent states in the sense
of the definition by Gazeau and Klauder. Different systems of CS for the Hamiltonian h0

have different properties. In particular, the Barut–Girardelo CS may be more localized at the
initial time moment while the Perelomov CS are more stable in time. For a particular example
of the free particle moving in a central field with the angular quantum number � = 1 we show
that this different time behaviour of different CS is practically unaffected by the Darboux
transformation and conjecture that this is a reflection of a more general statement that other
properties of CS may be approximately kept after the Darboux transformation is realized.
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Our results permit us to hope that the new systems of CS may be useful in describing similar
experiments where the initial systems have proved to be useful with the advantage that an
additional time-dependent member may be included in the Hamiltonian to approximate a real
interaction better.

Another case that we would like to mention here is related to the possibility of obtaining
time-dependent spherically symmetric exactly solvable three-dimensional interactions when
the parameter g in (1) is related to the orbital quantum number �, g = �(� + 1). An example
will be discussed in section 3.

2. Singular oscillator Hamiltonian

In this section, we summarize briefly what is known about this Hamiltonian and its coherent
states (see, e.g., [5, 8, 18–20]).

In contrast to most papers using different modifications of the method of quantum
invariants [21] for solving the Schrödinger equation, we are using the method of separation of
variables [22]. The advantage of this approach is that we do not need to be restricted by any
quantum mechanical picture. Instead, we consider the Schrödinger equation as a second-order
parabolic differential equation, which gives us the possibility of getting the ‘nonphysical’
solutions we need for applying the Darboux algorithm.

2.1. Solutions of the Schrödinger equation

Generators of the SU(1, 1) symmetry group, being symmetry operators of the Schrödinger
equation with the Hamiltonian h0, in the coordinate representation

k− = 2[a2 − ε2gx−2] k+ = 2[(a+)2 − ε2gx−2] (2)

k0 = 1
2 (k−k+ − k+k−) (3)

are expressed in terms of the harmonic oscillator creation and annihilation operators

a = ε∂x − i

2
ε̇x a+ = −ε̄∂x +

i

2
˙̄εx.

The dot over a symbol means the derivative with respect to time. Parameters ε and ε̄ are
linearly independent solutions to the equation of motion for the classical harmonic oscillator

ε̈ + 4ω2(t)ε = 0.

In particular, when ε is complex, ε̄ will denote its complex conjugate and they are such
that ε̇ε̄ − ε ˙̄ε = 1

2 i. Casimir operator C is expressed in terms of the parameter g: C =
1
2 (k+k− + k−k+) − k2

0 = 3
16 − 1

4g. This gives the relation between g and the representation
parameter k: C = k(1 − k), g = 3

4 + 4k(k − 1). We would like to mention that by definition
of a symmetry operator of a linear differential equation (see, e.g., [22]) the operators (2),
(3) commute with the Schrödinger operator i∂t − h0 with h0 as given in (1) on the space
of solutions of the Schrödinger equation and therefore they are integrals of motion for this
equation. The Hamiltonian (1) is not an integral of motion (which reflects the fact that the
energy is not a conserving quantity for a time-dependent potential) and cannot be expressed
as a linear combination of the operators (2), (3) with time-independent coefficients.

Square integrable solutions ψn(x, t), n = 0, 1, . . . , of the Schrödinger equation satisfying
the zero boundary condition at the origin form a basis of the discrete series irreducible
representation T +

k (g) of the group SU(1, 1) at k = 1
2 + 1

4

√
1 + 4g in the Hilbert space L2(0,∞).

They can easily be obtained starting from the vacuum state (see, e.g., [2]). But to be able
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to apply below the time-dependent Darboux algorithm we need solutions outside the Hilbert
space L2(0,∞). To get them we proceed to solving the Schrödinger equation with the
Hamiltonian (1).

To solve the Schrödinger equation simultaneously with the eigenvalue equation for k0

we are using the method of separation of variables. From coordinates (x, t) we are going to
curvilinear coordinates (ξ, τ ) defined as ξ = xγ −1/2, τ = t where γ = εε̄. The choice

ψ = e
i
8 ξ 2γ̇ P (ξ)Q(τ) (4)

guarantees the separation of variables. The eigenvalue equation for k0, k0ψ = λψ , is
reduced to the first-order ordinary equation for P which can readily be integrated to give
P = γ −1/4 (ε̄/ε)λ. So, replacing the action of k0 on a solution by multiplication on the
separation constant λ one obtains from the Schrödinger equation the following second-order
differential equation:

Q′′(y) − [
1
4y2 + gy−2 − 2λ

]
Q(y) = 0 y = 1

2ξ. (5)

This equation can be reduced to the equation for the Laguerre polynomials if λ = n + k, n =
0, 1, . . . , which just corresponds to the well-known coordinate representation of the basis
functions ψn(x, t). If λ = −k −n or λ = k −n− 1, n = 0, 1, . . . , it can give rise to Laguerre
polynomials also, but of course this does not correspond to square integrable solutions of
the Schrödinger equation with the zero boundary condition at the origin. Finally, all these
solutions have the form

ψn = N0nγ
−1/4

(
ε̄

ε

)λ

yα+ 1
2 exp

((
±1

4
+

i

2
γ̇

)
y2

)
Lα

n

(
∓1

2
y2

)
y = 1

2
γ − 1

2 x. (6)

Here, α is defined by the equation α2 = (2k − 1)2. The lower sign in (6) and the choice
α = 2k − 1 correspond to the discrete spectrum eigenfunctions. The upper sign permitting α

to be both positive and negative corresponds to solutions which do not belong to the Hilbert
space L2(0,∞). For α = 2k − 1 they are such that k0ψn(x, t) = −(k + n)ψn(x, t) and
for α = 1 − 2k they satisfy the equation k0ψn(x, t) = (k − n − 1)ψn(x, t). The value
N0n = 23k− 1

2 (n!)
1
2 �− 1

2 (n+ 2k) guarantees the normalization of the square integrable solutions
to the unity. For the non-normalizable solutions N0n does not play any role. It is easily verified
that the action of the operators (2) and (3) on the functions (6) when they form a basis in the
Hilbert space L2(0,∞) is given by

k0ψn(x, t) = (k + n)ψn(x, t) k±ψn(x, t) = −c±
n ψn±1(x, t)

c±
n = (

n + 1
2 ± 1

2

) 1
2
(
n + 2k − 1

2 ± 1
2

) 1
2 .

(7)

For applying the Darboux algorithm below we need nodeless solutions. The zeros of the
Laguerre polynomials are well known [23]. In the negative semiaxis, x < 0, Lα

n(x) has only
one node provided (α + 1)n = (α + 1)(α + 2) · · · (α + n) < 0. It is clear that since we put
k = 1

2 + 1
4

√
1 + 4g, α = 2k − 1 = 1

2

√
1 + 4g > 0 meaning that in this case any ψn is nodeless

and it is such that ψ−1
n (∞) = 0 but ψ−1

n (0) = ∞. For a negative α the result depends on
the interval where α falls. If −2m − 1 > α > −2m − 2, we have n = 0, 2, . . . , 2m and for
−2m � α � −2m − 1 more values of n are possible: n = 0, 2, . . . , 2m, 2m + 1, 2m + 2, . . . ,

where m = 0, 1, . . . . Moreover, for α < −3/2 the function ψ−1
n (x) is square integrable and

belongs to the domain of definition of h0 when it is considered as an operator in the Hilbert
space L2(0,∞).
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2.2. Barut–Girardelo coherent states

The states ψµ(x, t) known as Barut–Girardelo CS [20] are defined as the eigenstates of the
operator k−

k−ψµ(x, t) = µψµ(x, t) µ ∈ C. (8)

To solve this equation simultaneously with the Schrödinger equation, we are using the method
of separation of variables once again. In coordinates {ξ = x/ε, τ = t}, the Schrödinger
equation separates if ψµ = exp

(
1
4εε̇ξ 2

)
P(ξ)Q(τ). The function P(ξ) is defined by a first-

order ordinary equation which is easily integrated to give P = ε− 1
2 e−2µ2 ε̄

ε . The Schrödinger
equation is reduced to the following second-order equation for Q:

Q′′(ξ) − (gξ−2 + µ2)Q(ξ) = 0 (9)

which after changing the dependent variable Q = ξ
1
2 I becomes the modified Bessel equation

for I. The condition for ψµ(x, t) belong to the domain of definition of h0, when it is considered
as an operator acting in the space L2(0,∞), selects for us only one solution to this equation:
I = I2k−1(µξ). (We are using the standard notation for the Bessel functions [23].) To calculate
the normalization integral, we are making use of tables [24]. So, the normalized solution is

ψµ(x, t) = 1

2ε
I

− 1
2

2k−1(4µµ̄)
√

xI2k−1

(
1

ε
µx

)
exp

(
iε̇

4ε
x2 − 2ε̄

ε
µ2

)
. (10)

Expanding the Bessel function here in the Taylor series one gets their expansion in terms of
Laguerre polynomials and in such a way they are expressed in terms of the basis functions (6)
with the coefficients depending only on the even powers of µ. Therefore, it is more convenient
to change the complex variable µ in favour of λ = 2µ2 which yields

ψλ(x, t) = N0λ

∞∑
n=0

anλ
nψn(x, t) an = (−1)n

√
�(2k)√

n!�(n + 2k
λ ∈ C (11)

with

N0λ = (λ̄λ)
k
2 − 1

4 �− 1
2 (2k)I

− 1
2

2k−1(2|λ|). (12)

As usual, the states ψλ(x, t) are not orthogonal to each other

〈ψλ′ |ψλ〉 = I2k−1(2
√

λλ̄′)

[I2k−1(2|λ|)I2k−1(2|λ′|)] 1
2

.

Since the basis {ψn(x, t)} is complete in the Hilbert space one can calculate [8] the
measure ρ(λ) which realizes the resolution of the identity over the coherent states ψλ∫

|ψλ〉〈ψλ| dρ(λ) = 1 ρ(λ) = 1

π
K2k−1(2|λ|)I2k−1(2|λ|) dλ dλ̄. (13)

All integrals over the variable λ are extended to the whole complex plan.
Now one can construct a holomorphic representation of the vectors and operators [8]. Any

ψ(x, t) = ∑∞
n=0 cnψn(x, t) ∈ L2(0,∞) can be written in the coherent state representation

ψc(λ):

ψc(λ) := 〈ψλ̄(x, t) | ψ(x, t)〉 = N0λ

∞∑
n=0

ancnλ
n ≡ N0λψ(λ) λ ∈ C. (14)

The holomorphic function ψ(λ) = ∑∞
n=0 ancnλ

n can be associated with any function
ψ(x, t) ∈ L2(0,∞) given by its Fourier coefficients cn over the basis (6).



10278 B F Samsonov

Using the complex conjugate form of the resolution of the identity (13) one can define
an inner product 〈ψa(λ) | ψb(λ)〉 in the space of the functions ψa,b(λ) holomorphic in the
complex plane

〈ψa | ψb〉 =
∫

|N0λ|2ψ̄a(λ)ψb(λ) dρ(λ) := 〈ψa(λ) | ψb(λ)〉. (15)

This means that the integration in the space of holomorphic functions should be carried out
with the measure dρ̃(λ) = |N0λ|2 dρ(λ), so that

〈ψa(λ) | ψb(λ)〉 =
∫

ψ̄a(λ)ψb(λ) dρ̃(λ). (16)

To distinguish this inner product from the one in the space L2(0,∞) we indicate the integration
variable λ inside the parentheses. The space of holomorphic functions ψ(λ) such that∫

|ψ(λ)|2 dρ̃(λ) < ∞
equipped with the inner product (16) becomes the Hilbert space.

The orthonormal basis ψn(x, t) in this representation looks as follows:

ψn(λ) = anλ
n 〈ψn(λ) | ψn′(λ)〉 = δnn′ .

The holomorphic representation of the Dirac-delta function, coherent states and the SU(1, 1)

generators are exactly the same as for the time-independent case [8]. The mean value of the
operator k0 in the coherent state

〈ψλ|k0|ψλ〉 = k + |λ| I2k+1 (2|λ|)
I2k−1 (2|λ|) (17)

may be useful in the following.

2.3. Perelomov coherent states

Perelomov CS ψz(x, t) are obtained by acting on the ground-state function with the group
translation operator (see, e.g., [2]). Therefore, their Fourier coefficients over the basis ψn(x, t)

are independent of t and coincide with the ones for the time-independent frequency ω

ψz(x, t) = N0z

∞∑
n=0

anz
nψn(x, t) |z| < 1 (18)

N0z = (1 − |z|2)k an =
√

�(n + 2k)

n!�(2k)
. (19)

Using the generating function for the Laguerre polynomials one gets their explicit expression

ψz(x, t) = 2
1
2 −3k�− 1

2 (2k) e−2kx2k− 1
2

(
1 − |ζ |2
(1 − ζ )2

)k

exp

(
− x2

16γ

1 + ζ

1 − ζ
+

ix2γ̇

8γ

)
(20)

where ζ = z ε̄
ε

and |z| < 1.
We note that since the series expansion (18) of the time-dependent CS (20) in terms of the

time-dependent basis {ψn(x, t)} is exactly the same as the expansion for the time-independent
Hamiltonian, all properties of such states known for the stationary case take place for the non-
stationary one. In particular, they realize the resolution of the identity operator and, hence, one
can map any square integrable on the positive semiaxis function to a function holomorphic in
the unit disc getting in such a way a holomorphic representation. We will not go in details for
this case since they are very well known [2].
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Figure 1. Comparison between probability distribution for Barut–Girardelo and Perelomov CS
for time moments t = 0: 1 and 1a; t = 0.5: 2 and 2a; t = 1: 3 and 3a; t = 2: 4 and 4a.

Figure 2. Comparison between probability distribution for Darboux transformed Barut–Girardelo
and Perelomov CS for time moments t = 0: 1 and 1a; t = 0.5: 2 and 2a; t = 1: 3 and 3a; t = 2:
4 and 4a.

2.4. Discussion

Since the parameters z and λ labelling the CS fill different domains, it is not straightforward
to make a comparison between them. One of the possibilities could be to choose these
parameters such that the mean value of an operator is the same for both states. As a particular,
example, we take ω = 0 (free particle) and g = 2 (orbital quantum number � = 1). In this
case, ε = 1√

2
(t + i) and we have chosen real values for z and λ such that the mean value of k0

coincides with its value in the first excited state (6) which is k+1. In this case, z = (2k+1)−1/2

and λ 	 1.021. With these values of z and λ, we plotted the squared modulus of ψz(x, t) (20)
and ψλ(x, t) given by (10) at µ = √

λ/2 in figure 1. It is clearly seen from the figure that at
the initial time moment the Barut–Girardelo CS are much more localized than the Perelomov
CS but the latter are much more stable in time. At times greater than 2, they are already very
spread whereas the Perelomov CS maintain almost the same localization as at the initial time
moment. In the next section, we show that the Darboux transformation keeps the different
time behaviour of the two types of states practically unchanged.
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3. Darboux transformation of coherent states

There are several options to realize Darboux transformations for the time-dependent
Schrödinger equation. The method based on differential transformation operators developed
by Matveev and Salle [25] gives in general complex potential differences since it uses the
second logarithmic derivative with respect to the spatial variable of a given solution of the
Schrödinger equation which is a complex valued function. For instance, for the free particle
one can choose proper solutions to get the well-known soliton potentials for the Kadomtsev–
Petviashvili I equation, but for the Hamiltonian (1) the solutions of the form (6) produce only
complex potential differences. This inconvenience is not present in the binary transformation
[25] (see also [26] and for recent developments [27]), but the transformation operator now has
an integral form which usually is less convenient in practical calculation than the differential
one. In [28], the method of differential transformation operators is modified to get real exactly
solvable potentials which we find the most convenient for our purpose. According to this
approach, real nontrivial potentials are possible if the Schrödinger equation has at least one
solution u = u(x, t) satisfying the reality condition (log u/u)xxx = 0. The solutions (4)
satisfy this condition for any real function Q. So, taking different real solutions of equation (9)
one can, in general, obtain a two-parameter family of exactly solvable partners for h0, but
only the functions u = ψn(x, t) (6) produce potentials expressed in terms of elementary
functions. Therefore in what follows, we restrict ourselves by considering this particular
choice of transformation functions only. Nevertheless, it is useful to note that the use of N
iterated transformations can give a 2N -parameter family of exactly solvable potentials which
in our case becomes N parameter and the parameters take only discrete values. Since the
iteration procedure is a straightforward generalization of the simple one-step transformation,
we will illustrate our ideas using only the simplest one-step transformations.

Between the square integrable solutions only ψ0(x, t) is nodeless. Unfortunately, it
produces a new potential of the same kind as V0 changing the value of g only (shape invariance
at time-dependent level). So, to get nontrivial new potentials, we have to keep in (6) only
the upper sign. For α < −3/2 any nodeless function (6) gives rise to a new potential. The
values of the parameter α for which it is nodeless are indicated at the end of section 2.1. For
simplicity, we will consider here only α > 0 when all square integrable and vanishing at the
origin solutions for the transformed Hamiltonian h1 = −∂2

x + V1(x, t) can be obtained by
acting on corresponding solutions of the initial equation with the transformation operator

L = L1(t)[∂x − ux(x, t)/u(x, t)] L1(t) = exp

[
2
∫

dt Im(ln u)xx

]
. (21)

The potential V1(x, t) is expressed in terms of the same function u:

V1(x, t) = V0(x, t) + A(x, t) A(x, t) = −[ln |u(x, t)|2]xx.

Taking one of the functions (6) with n = m one gets a one-parameter (labelled by m) family
of the potential differences A(x, t) = Am(x, t)

Am(x, t) = 4k − 1

x2
+

1

8

(
xL2k

m−1 (z)

γL2k−1
m (z)

)2

− x2L2k+1
m−2(z) + 4γL2k

m−1(z)

8γ 2L2k−1
m (z)

− 1

4γ
z = − x2

8γ
.

(22)

They are expressed in terms of Laguerre polynomials and therefore for any integer m only
elementary functions are involved in this expression. Here and in the following, the Laguerre
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Figure 3. Potentials (25) at � = 0 and at different time moments: 1: t = 0; 2, t = 0.5; 3: t = 1;
4, t = 2.

polynomials with a negative value of the subscript should be put equal to zero. For instance,
for ω(t) = 0 and m = 1 the new potential reads

V1(x, t) = (� + 1)(� + 2)

x2
+ Ṽ1(x, t) (23)

where

Ṽ1(x, t) = − 1

1 + t2
− 4

x2 + (2� + 3)(1 + t2)
+

8x2

(x2 + (2� + 3)(1 + t2))2
(24)

and we put g = �(� + 1). For m = 2, the expression for Ṽ1(x, t) is still reasonable

Ṽ1(x, t) = − 1

1 + t2
− 8

X
(3x2 + (5 + 2�)(1 + t2)) +

32

X2
((x3 + (5 + 2�)(1 + t2)x)2) (25)

where X = x4 + 2(5 + 2�)(1 + t2)x2 + (3 + 2�)(5 + 2�)(1 + t2)2. It is also clear that if we
consider x in (24) and (25) as the radial variable, x = r , we can solve the three-dimensional
Schrödinger equations with these potentials since the angular variables being separated in
this equation with the help of the spherical harmonic Y�+1,m′(θ, ϕ) and the corresponding
point transformation of the wavefunction being made one gets from the three-dimensional
Schrödinger equation the one-dimensional equation with the potential (23), for which we
know how to get solutions. The potentials (24) and (25) look like potential wells with the
depth decreasing in time for t � 0 and they are even functions of time. Their typical behaviour
is shown in figure 3. We would also like to note that for a periodical time dependence of ω(t),
it is possible to manage quasienergy levels and compute the change of the geometric phase
produced by the Darboux transformation in a way similar to that already reported in [29] for
the time-dependent harmonic oscillator. This work is currently in progress.

The function L1(t) is determined by (21) up to a multiplicative constant which we
fix to simplify subsequent formulae so that L1 = √

2γ and the explicit expression for the
transformation operator (21) is

L =
√

2γ

[
∂x − x

8γ
− 4k − 1

2x
− ixγ̇

4γ
− xL2k

m−1

4γL2k−1
m

]
. (26)

Normalized to unity, solutions for the Hamiltonian h1 are ϕn = N1nLψn,N1n = (n+2k+m)−
1
2 .

Operator L and its formally adjoint L+ factorize the symmetry operator k0: L+L =
k0 + k + m. The opposite superposition LL+ is a symmetry operator for the transformed
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Schrödinger equation. If we denote p0 = LL+ − k − m then the functions ϕn are
eigenfunctions of p0 and the spectrum of p0 is identical to the spectrum of k0. Using
k± and transformation operators L,L+ one can construct other symmetry operators for the
transformed equation: p± = Lκ±L+. They are ladder operators for the functions ϕn:

p±ϕn(x, t) = (N1nN1(n±1))
−1c±

n ϕn±1(x, t).

We would like to note that the Hamiltonian h1 gives us an example of the Schrödinger equation,
symmetry operators of which do not close a Lie algebra but satisfy a polynomial algebra

[p0, p±] = ±p±

[p−, p+] = 2
[
k(1 − k) + 2p0(k + m) + 2p2

0

]
(p0 + k + m).

Similar algebra was previously obtained for the time-independent singular oscillator in [5].

3.1. Transformation of Barut–Girardelo coherent states

To obtain CS for the Hamiltonian h1 we act with L given in (26) on CS ψλ: ϕλ = N1λLψλ. The
factor N1λ being calculated from the formula N−2

1λ = 〈ψλ|k0 + k + m|ψλ〉 and (17) guarantees
the normalization of the states ϕλ to unity. Their series expansion in terms of the basis {ϕn}
can be found by acting with the same operator on the series (11):

ϕλ = N

∞∑
n=0

bnλ
nϕn bn = an(n + 2k + m)

1
2 (2k + m)−

1
2 λ ∈ C (27)

where N = (2k + m)
1
2 N1λN0λ.

The states ϕλ = ϕλ(x, t) thus obtained may be interpreted as coherent states if they admit
the resolution of the identity operator∫

|ϕλ〉〈ϕλ| dρ̃1(λ) = 1. (28)

Now we proceed to find the measure ρ̃1(λ). We will look for the function ρ̃1(λ) depending
only on the absolute value of λ, |λ| = √

x: dρ̃1 = 1
2h(x) dx dφ; the function h(x) is to be

determined.
It is convenient to use the polar coordinates in the complex plane of the variable

λ, λ = √
x exp(iφ). After being integrated over the variable φ, equation (28) yields

1 =
∞∑

n=0

π(n + 2k + m)

n!�(n + 2k)

∫ ∞

0
xn+α/2−1/4I−1

α− 1
2
(2

√
x)h0(x) dx|ϕn〉〈ϕn|. (29)

From here it follows that if the equation

π(n + 2k + m)

�(n + 1)�(n + 2k)

∫ ∞

0
xn+α/2−1/4I−1

α− 1
2
(2

√
x)h0(x) dx = 1 (30)

is satisfied, then (28) will take place also because of the completeness of the system {ϕn}. If
now we rewrite (30) as∫ ∞

0
xn�(x) dx = �(n + 1)�(n + 2k)

(n + 2k + p)
(31)

where

�(x) = |N0λN1λ|2h(x) (32)
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we recognize in it a problem of moments on a semiaxis (see, e.g., [32]). To solve
this problem, we use the following integral [33]:∫ ∞

0
xnf (x) dx = �(n + 1)�(n + 2k) (33)

where f (x) = 2xk− 1
2 K2k−1(2

√
x).

It is not difficult to prove that �(x) can be expressed in terms of f (x) as follows:

�(x) = xm+2k−1
∫ ∞

x

y−2k−mf (y) dy. (34)

Indeed, first we note that since k > 1
2 we have x�(x) → 0 when x → 0. Therefore, the

integration in (31) by parts under the condition (33) yields just the right-hand side of (31)
meaning that equations (34) and (32) define the measure ρ̃1(λ).

The resolution of identity (28) permits us to construct a holomorphic representation for
the transformed Hamiltonian h1. The Fourier coefficients {cn} of a function ϕ(x, t) over the
basis {ϕn(x, t)} gives us the same function in CS representation: ϕc(λ) = 〈ϕλ|ϕ〉 = Nϕ(λ)

where the function ϕ(λ) = ∑∞
n=0 bncnλ

n is the holomorphic representative of ϕ(x, t). Now
one can define a new inner product

〈ϕ1(λ)|ϕ2(λ)〉 =
∫

〈ϕ1|ϕ λ〉〈ϕ λ|ϕ2〉 dρ̃1(λ) =
∫

|N |2ϕ1(λ)ϕ2(λ) dρ̃1(λ)

in the space of holomorphic functions, which gives us a holomorphic representation of states
and operators different from that discussed in section 2.2.

One can easily see that the Darboux transformation being realized, any basis function
ψn(λ) goes to ϕn(λ) = (n + 2k + m)

1
2 (2k + m)−

1
2 ψn(λ). Therefore, if we want the functions

ψn(λ) and ϕn(λ) to be related by the Darboux transformation, we have to put

ϕn(λ) = (n + 2k + m)−
1
2 L(λ)ψn(λ) ψn(λ) = (n + 2k + m)−

1
2 L+(λ)ϕn(λ).

This gives us the holomorphic representation of the Darboux transformation operators

L(λ) = (m + 2k)−
1
2 [k0(λ) − k − m] L+(λ) = (m + 2k)

1
2 .

3.2. Transformation of Perelomov coherent states

Once again we act with the transformation operator L given in (26) but now on ψz(x, t)

(20) to get the Darboux-transformed Perelomov CS, ϕz(x, t) = N1zLψz(x, t). Normalization
constant N1z is easily calculated using the equation 〈Lψz|Lψz〉 = 〈ψz|L+Lψz〉 and the
factorization property of the transformation operators: N−2

1z = m+ 2k(1−|z|2). Their Fourier
series in terms of the basis {ϕn(x, t)} is

ϕz(x, t) = Nz

∞∑
n=0

bnz
nϕn(x, t) Nz = N0zN1z(2k + m)

1
2

bn = an(n + 2k + m)
1
2 (2k + m)−

1
2 .

(35)

Here also the series (35) is exactly the same as previously obtained for the time-independent
oscillator [5]. We have already found [5] the measure which realizes the resolution of the
identity operator in terms of ϕz, constructed a holomorphic representation for the operators and
states, found the Kähler potential and symplectic 2-form meaning that we obtained a classical
mechanics, which being quantized à la Berezin gives us back the holomorphic representation
of the quantum system. This procedure can be considered as the one giving rise to a classical
counterpart of the Darboux transformation valid for both time-dependent and time-independent
cases and consisting of a transformation of the Kähler potential resulting in a distortion of the
initial phase space.
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Figure 4. Comparison between probability distribution for Barut–Girardelo CS before (solid line)
and after (dashed line) Darboux transformation.

Figure 5. Comparison between probability distribution for Perelomov CS before (solid line) and
after (dashed line) Darboux transformation.

3.3. Discussion

We would like to point out that if the Schrödinger equation has a symmetry algebra, this
property is usually lost after the Darboux transformation. Nevertheless, if there exist ladder
operators for the initial basis functions, the transformed basis may also have them. In such a
case, it is possible to look for eigenstates of the annihilation operator and call these functions
coherent states. For the case of the time-independent harmonic oscillator potential, this
approach was realized in [30]. Since ladder operators now have two derivative orders more
with respect to the initial ladder operators, the differential equation they satisfy is rather
complicated [31] which makes it difficult to study such states. Our approach has an advantage
that the transformation operator (26) is a simple first-order differential operator with the
coefficients expressed in terms of elementary functions only. So, it is very easy to operate with
it. Moreover, in such a way one can get different systems of CS if they are available for the
initial Hamiltonian. Usually different systems of CS exhibit different properties [10, 19]. We
conjecture that the Darboux transformation approximately preserves the different behaviour
of different CS. To support this conjecture, we plotted the transformed Barut–Girardelo CS
together with the transformed Perelomov CS in figure 2. At first sight, the difference between
figures 1 and 2 is practically invisible. To show it better, we plotted the Barut–Girardelo CS
(solid line) together with their transformed version (dashed line) in figure 4. Figure 5 shows
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the Perelomov CS before (solid line) and after (dashed line) the Darboux transformation. It is
clearly seen from these figures that for either case the Darboux transformation results mainly
in a displacement of the curve while its shape and time behaviour are very little affected.

4. Conclusion

We have shown that acting with the Darboux transformation operator on known CS of the
time-dependent singular oscillator gives us states with similar properties. Thus, the ones
obtained from Barut–Girardelo CS may be called Barut–Girardelo-like CS while the others,
which are produced using Perelomov CS, may be called Perelomov-like CS. Each system of
CS admits a resolution of the identity operator which makes it possible to construct different
holomorphic representations. A particular example of a free particle in a p state (� = 1) shows
that Barut–Girardelo-like CS are well localized at the initial time moment while Perelomov-
like CS are more stable with time evolution. Such behaviour is a reflection of the similar
behaviour of corresponding states before the transformation. Therefore, we hope that the new
systems of CS may find application in describing similar experiments where the known systems
have proven to be useful with the advantage that an additional time-dependent interaction may
be included in the Hamiltonian to approximate better experimental results.
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